Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.283
Filtrar
1.
Curr Microbiol ; 81(5): 125, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558085

RESUMO

More than half of the world's population is infected with Helicobacter pylori (H. pylori), which may lead to chronic gastritis, peptic ulcers, and stomach cancer. LeoA, a conserved antigen of H. pylori, aids in preventing this infection by triggering specific CD3+ T-cell responses. In this study, recombinant plasmids containing the LeoA gene of H. pylori are created and conjugated with chitosan nanoparticle (CSNP) to immunize BALB/c mice against the H. pylori infection. We used the online Vaxign tool to analyze the genomes of five distinct strains of H. pylori, and we chose the outer membrane as a prospective vaccine candidate. Afterward, the proteins' immunogenicity was evaluated. The DNA vaccine was constructed and then encapsulated in CSNPs. The effectiveness of the vaccine's immunoprotective effects was evaluated in BALB/c mice. Purified activated splenic CD3+ T cells are used to test the anticancer effects in vitro. Nanovaccines had apparent spherical forms, were small (mean size, 150-250 nm), and positively charged (41.3 ± 3.11 mV). A consistently delayed release pattern and an entrapment efficiency (73.35 ± 3.48%) could be established. Compared to the non-encapsulated DNA vaccine, vaccinated BALB/c mice produced higher amounts of LeoA-specific IgG in plasma and TNF-α in splenocyte lysate. Moreover, BALB/c mice inoculated with nanovaccine demonstrated considerable immunity (87.5%) against the H. pylori challenge and reduced stomach injury and bacterial burdens in the stomach. The immunological state in individuals with GC with chronic infection with H. pylori is mimicked by the H. pylori DNA nanovaccines by inducing a shift from Th1 to Th2 in the response. In vitro human GC cell development is inhibited by activated CD3+ T lymphocytes. According to our findings, the H. pylori vaccine-activated CD3+ has potential immunotherapeutic benefits.


Assuntos
Quitosana , Infecções por Helicobacter , Helicobacter pylori , Nanopartículas , Vacinas de DNA , Humanos , Animais , Camundongos , Helicobacter pylori/genética , Vacinas de DNA/genética , DNA , Vacinação , Infecções por Helicobacter/prevenção & controle , Infecções por Helicobacter/microbiologia , Vacinas Bacterianas/genética , Camundongos Endogâmicos BALB C , Anticorpos Antibacterianos
2.
Virulence ; 15(1): 2345019, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38656137

RESUMO

Klebsiella pneumoniae is an important gram-negative bacterium that causes severe respiratory and healthcare-associated infections. Although antibiotic therapy is applied to treat severe infections caused by K. pneumoniae, drug-resistant isolates pose a huge challenge to clinical practices owing to adverse reactions and the mismanagement of antibiotics. Several studies have attempted to develop vaccines against K. pneumoniae, but there are no licensed vaccines available for the control of K. pneumoniae infection. In the current study, we constructed a novel DNA vaccine, pVAX1-YidR, which encodes a highly conserved virulence factor YidR and a recombinant expression plasmid pVAX1-IL-17 encoding Interleukin-17 (IL-17) as a molecular adjuvant. Adaptive immune responses were assessed in immunized mice to compare the immunogenicity of the different vaccine schemes. The results showed that the targeted antigen gene was expressed in HEK293T cells using an immunofluorescence assay. Mice immunized with pVAX1-YidR elicited a high level of antibodies, induced strong cellular immune responses, and protected mice from K. pneumoniae challenge. Notably, co-immunization with pVAX1-YidR and pVAX1-IL-17 significantly augmented host adaptive immune responses and provided better protection against K. pneumoniae infections in vaccinated mice. Our study demonstrates that combined DNA vaccines and molecular adjuvants is a promising strategy to develop efficacious antibacterial vaccines against K. pneumoniae infections.


Assuntos
Vacinas Bacterianas , Modelos Animais de Doenças , Interleucina-17 , Infecções por Klebsiella , Klebsiella pneumoniae , Vacinas de DNA , Animais , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/genética , Infecções por Klebsiella/prevenção & controle , Infecções por Klebsiella/imunologia , Interleucina-17/imunologia , Interleucina-17/genética , Vacinas de DNA/imunologia , Vacinas de DNA/genética , Vacinas de DNA/administração & dosagem , Camundongos , Humanos , Feminino , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/administração & dosagem , Células HEK293 , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Imunização , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Fatores de Virulência/imunologia , Fatores de Virulência/genética , Imunidade Adaptativa , Camundongos Endogâmicos BALB C , Adjuvantes Imunológicos/administração & dosagem , Imunidade Celular
3.
Microb Biotechnol ; 17(3): e14446, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38536702

RESUMO

Developing protein-based vaccines against bacteria has proved much more challenging than producing similar immunisations against viruses. Currently, anti-bacterial vaccines are designed using methods based on reverse vaccinology. These identify broadly conserved, immunogenic proteins using a combination of genomic and high-throughput laboratory data. While this approach has successfully generated multiple rationally designed formulations that show promising immunogenicity in animal models, few have been licensed. The difficulty of inducing protective immunity in humans with such vaccines mirrors the ability of many bacteria to recolonise individuals despite recognition by natural polyvalent antibody repertoires. As bacteria express too many antigens to evade all adaptive immune responses through mutation, they must instead inhibit the efficacy of such host defences through expressing surface structures that interface with the immune system. Therefore, 'immune interface interference' (I3) vaccines that target these features should synergistically directly target bacteria and prevent them from inhibiting responses to other surface antigens. This approach may help us understand the efficacy of the two recently introduced immunisations against serotype B meningococci, which both target the Factor H-binding protein (fHbp) that inhibits complement deposition on the bacterial surface. Therefore, I3 vaccine designs may help overcome the current challenges of developing protein-based vaccines to prevent bacterial infections.


Assuntos
Vacinas Meningocócicas , Neisseria meningitidis , Animais , Humanos , Vacinas Bacterianas/genética , Proteínas de Bactérias/genética , Antígenos de Bactérias/genética , Anticorpos Antibacterianos , Neisseria meningitidis/genética
4.
Microb Pathog ; 189: 106596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395317

RESUMO

Botulism is a severe disease caused by potent botulinum neurotoxins (BoNTs) produced by Clostridium botulinum. This disease is associated with high-lethality outbreaks in cattle, which have been linked to the ingestion of preformed BoNT serotypes C and D, emphasizing the need for effective vaccines. The potency of current commercial toxoids (formaldehyde-inactivated BoNTs) is assured through tests in guinea pigs according to government regulatory guidelines, but their short-term immunity raises concerns. Recombinant vaccines containing the receptor-binding domain have demonstrated potential for eliciting robust protective immunity. Previous studies have demonstrated the safety and effectiveness of recombinant E. coli bacterin, eliciting high titers of neutralizing antibodies against C. botulinum and C. perfringens in target animal species. In this study, neutralizing antibody titers in cattle and the long-term immune response against BoNT/C and D were used to assess the efficacy of the oil-based adjuvant compared with that of the aluminum hydroxide adjuvant in cattle. The vaccine formulation containing Montanide™ ISA 50 yielded significantly higher titers of neutralizing antibody against BoNT/C and D (8.64 IU/mL and 9.6 IU/mL, respectively) and induced an immune response that lasted longer than the response induced by aluminum, extending between 30 and 60 days. This approach represents a straightforward, cost-effective strategy for recombinant E. coli bacterin, enhancing both the magnitude and duration of the immune response to botulism.


Assuntos
Toxinas Botulínicas , Botulismo , Clostridium botulinum , Bovinos , Animais , Cobaias , Botulismo/prevenção & controle , Botulismo/veterinária , Hidróxido de Alumínio , Escherichia coli/genética , Vacinas Bacterianas/genética , Toxinas Botulínicas/genética , Clostridium botulinum/genética , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Imunidade , Anticorpos Antibacterianos
5.
Vaccine ; 42(8): 1868-1872, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38365481

RESUMO

Vaccination is the most cost-effective tool to control contagious bovine pleuropneumonia. The vaccines currently used in Africa are derived from a live strain called T1, which was attenuated by passage in embryonated eggs and broth culture. The number of passages is directly correlated to the degree of attenuation of the vaccinal strains and inversely correlated to their immunogenicity in cattle. Current quality control protocols applied to vaccine batches allow the assessment of identity, purity, and titers, but cannot assess the level of genetic drift form the parental vaccine strains. Deep sequencing was used to assess the genetic drift generated over controlled in vitro passages of the parental strain, as well as on commercial vaccine batches. Signatures of cloning procedures were detected in some batches, which imply a deviation from the standard production protocol. Deep sequencing is proposed as a new tool for the identity and stability control of T1 vaccines.


Assuntos
Doenças dos Bovinos , Mycoplasma mycoides , Pleuropneumonia Contagiosa , Pleuropneumonia , Animais , Bovinos , Vacinas Bacterianas/genética , África , Vacinas Atenuadas/genética , Controle de Qualidade , Sequenciamento de Nucleotídeos em Larga Escala , Pleuropneumonia Contagiosa/prevenção & controle , Mycoplasma mycoides/genética
6.
Vet Microbiol ; 291: 110008, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364465

RESUMO

Mycoplasma gallisepticum infection in poultry leads to disease and pathology that can reduce producer profits. Live attenuated vaccines are available that can limit or completely prevent the effects of infection. Field isolates that are genetically related to the attenuated vaccine strains have been isolated, raising the question of whether the attenuation of the vaccine strains is limited and can lead the strains to revert to more virulent forms. The 6/85 live attenuated vaccine is derived from a field isolate collected in the United States. Analysis of the genome of sequenced M. gallisepticum strains revealed a cluster of 10 6/85-like strains that group with the 6/85 vaccine strain. Four genomic regions were identified that allowed for strain differentiation. The genetic differences between strains points toward nine of the ten strains most likely being sister strains to the 6/85 vaccine strain. Insufficient differences are present in the tenth strain to make a definitive conclusion. These results suggest that most if not all strains similar to the live attenuated vaccine strain are field isolates of the parent strain used to derive the live attenuated vaccine.


Assuntos
Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Animais , Vacinas Atenuadas , Vacinas Bacterianas/genética , Galinhas , Doenças das Aves Domésticas/prevenção & controle , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária
7.
Braz J Microbiol ; 55(1): 943-953, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38217795

RESUMO

Mycoplasma hyopneumoniae (M. hyopneumoniae) is a primary agent of porcine enzootic pneumonia, a disease that causes significant economic losses to pig farming worldwide. Commercial vaccines induce partial protection, evidencing the need for a new vaccine against M. hyopneumoniae. In our work, three chimeric proteins were constructed, composed of potentially immunogenic domains from M. hyopneumoniae proteins. We designed three chimeric proteins (Q1, Q2, and Q3) based on bioinformatics analysis that identified five potential proteins with immunogenic potential (MHP418, MHP372, MHP199, P97, and MHP0461). The chimeric proteins were inoculated in the murine model to evaluate the immune response. The mice vaccinated with the chimeras presented IgG and IgG1 against proteins of M. hyopneumoniae. There was induction of IgG in mice immunized with Q3 starting from 30 days post-vaccination, and groups Q1 and Q2 showed induction at 45 days. Mice of the group immunized with Q3 showed the production of IgA. In addition, the mice inoculated with chimeric proteins showed a proinflammatory cytokine response; Q1 demonstrated higher levels of TNF, IL-6, IL2, and IL-17. In contrast, animals immunized with Q2 showed an increase in the concentrations of TNF, IL-6, and IL-4, whereas those immunized with Q3 exhibited an increase in the concentrations of TNF, IL-6, IL-10, and IL-4. The results of the present study indicate that these three chimeric proteins can be used in future vaccine trials with swine because of the promising antigenicity.


Assuntos
Mycoplasma hyopneumoniae , Animais , Suínos , Camundongos , Mycoplasma hyopneumoniae/genética , Interleucina-4 , Interleucina-6 , Vacinas Bacterianas/genética , Imunoglobulina G , Proteínas Recombinantes de Fusão/genética
8.
mSystems ; 9(1): e0108723, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38078774

RESUMO

Borrelia burgdorferi, the pathogen of Lyme disease, differentially produces many outer surface proteins (Osp), some of which represent the most abundant membrane proteins, such as OspA, OspB, and OspC. In cultured bacteria, these proteins can account for a substantial fraction of the total cellular or membrane proteins, posing challenges to the identification and analysis of non-abundant proteins, which could serve as novel pathogen detection markers or as vaccine candidates. Herein, we introduced serial mutations to remove these abundant Osps and generated a B. burgdorferi mutant deficient in OspA, OspB, and OspC in an infectious 297-isolate background, designated as OspABC- mutant. Compared to parental isolate, the mutant did not reflect growth defects in the cultured medium but showed differential mRNA expression of representative tested genes, in addition to gross changes in cellular and membrane protein profiles. The analysis of differentially detectable protein contents of the OspABC- mutant, as compared to the wild type, by two-dimensional gel electrophoresis followed by liquid chromatography-mass spectrometry, identified several spirochete proteins that are dominated by proteins of unknown functions, as well as membrane transporters, chaperons, and metabolic enzymes. We produced recombinant forms of two of these represented proteins, BBA34 and BB0238, and showed that these proteins are detectable during spirochete infection in the tick-borne murine model of Lyme borreliosis and thus serve as potential antigenic markers of the infection.IMPORTANCEThe present manuscript employed a systemic approach to identify non-abundant proteins in cultured Borrelia burgdorferi that are otherwise masked or hidden due to the overwhelming presence of abundant Osps like OspA, OspB, and OspC. As these Osps are either absent or transiently expressed in mammals, we performed a proof-of-concept study in which their removal allowed the analysis of otherwise less abundant antigens in OspABC-deficient mutants and identified several immunogenic proteins, including BBA34 and BB0238. These antigens could serve as novel vaccine candidates and/or genetic markers of Lyme borreliosis, promoting new research in the clinical diagnosis and prevention of Lyme disease.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Camundongos , Animais , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Lipoproteínas/genética , Vacinas Bacterianas/genética , Antígenos de Superfície/genética , Doença de Lyme/diagnóstico , Borrelia burgdorferi/genética , Mamíferos
9.
J Biotechnol ; 380: 51-63, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38151110

RESUMO

Vibriosis is caused by Vibrio anguillarum in various species of aquaculture. A novel, secure, and stable vaccine is needed to eradicate vibriosis. Here, for reverse vaccinology and plant-based expression, the outer membrane protein K (OmpK) of V. anguillarum was chosen due to its conserved nature in all Vibrio species. OmpK, an ideal vaccine candidate against vibriosis, demonstrated immunogenic, non-allergic, and non-toxic behavior by using various bioinformatics tools. Docking showed the interaction of the OmpK model with TLR-5. In comparison to costly platforms, plants can be used as alternative and economic bio-factories to produce vaccine antigens. We expressed OmpK antigen in Nicotiana tabacum using Agrobacterium-mediated transformation. The expression vector was constructed using Gateway® cloning. Transgene integration was verified by polymerase chain reaction (PCR), and the copy number via qRT-PCR, which showed two copies of transgenes. Western blotting detected monomeric form of OmpK protein. The total soluble protein (TSP) fraction of OmpK was equivalent to 0.38% as detected by ELISA. Mice and fish were immunized with plant-derived OmpK antigen, which showed a significantly high level of anti-OmpK antibodies. The present study is the first report of OmpK antigen expression in higher plants for the potential use as vaccine in aquaculture against vibriosis, which could provide protection against multiple Vibrio species due to the conserved nature OmpK antigen.


Assuntos
Doenças dos Peixes , Vibrioses , Vibrio , Animais , Camundongos , Tabaco/genética , Vacinas Bacterianas/genética , Vibrio/genética , Vibrioses/prevenção & controle , Vibrioses/veterinária , Doenças dos Peixes/prevenção & controle
10.
Adv Sci (Weinh) ; 10(33): e2303568, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37867213

RESUMO

Engineered vector-based in vivo protein delivery platforms have made significant progress for both prophylactic and therapeutic applications. However, the lack of effective release strategies results in foreign cargo being trapped within the vector, restricting the provision of significant performance benefits and enhanced therapeutic results compared to traditional vaccines. Herein, the development of a Salmonella mRNA interferase regulation vector (SIRV) system is reported to overcome this challenge. The genetic circuits are engineered that (1) induce self-lysis to release foreign antigens into target cells and (2) activate the cytosolic surveillance cGAS-STING axis by releasing DNA into the cytoplasm. Delayed synthesis of the MazF interferase regulates differential mRNA cleavage, resulting in a 36-fold increase in the delivery of foreign antigens and modest activation of the inflammasome, which collectively contribute to the marked maturation of antigen-presenting cells (APCs). Bacteria delivering the protective antigen SaoA exhibits excellent immunogenicity and safety in mouse and pig models, significantly improving the survival rate of animals challenged with multiple serotypes of Streptococcus suis. Thus, the SIRV system enables the effective integration of various modular components and antigen cargos, allowing for the generation of an extensive range of intracellular protein delivery systems using multiple bacterial species in a highly efficient manner.


Assuntos
Antígenos de Bactérias , Vacinas Bacterianas , Animais , Camundongos , Suínos , Vacinas Bacterianas/genética , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , RNA Mensageiro , Morte Celular , Bactérias
11.
Front Cell Infect Microbiol ; 13: 1162299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180437

RESUMO

Vibrio alginolyticus is the common pathogen affecting various species of marine organisms. It has been demonstrated that fliR is a necessary virulence factor to adhere and infect their hosts for pathogenic bacteria. Frequent disease outbreaks in aquaculture have highlighted the necessity of developing effective vaccines. In the present study, in order to investigate the function of fliR in V.alginolyticus, the fliR deletion mutant ΔfliR was constructed and its biological properties were evaluated, additionally, the differences in gene expression levels between wild-type and ΔfliR were analyzed by transcriptomics. Finally, ΔfliR was used as a live attenuated vaccine to immunize grouper via the intraperitoneal route to evaluate its protective effect. Results show that fliR gene of V. alginolyticus was identified as being 783 bp in length, encoding 260 amino acids, and showing significant similarity to homologs of other Vibrio species. The fliR-deletion mutant ΔfliR of V. alginolyticus was successfully constructed, and its biological phenotype analysis showed no significant differences in growth capacity and extracellular enzyme activity compared to the wild-type. However, a substantial reduction of motility ability was detected in ΔfliR. Transcriptomic analysis revealed that the absence of fliR gene is responsible for a significantly decreased expression of flagellar genes, including flaA, flaB, fliS, flhB and fliM. The fliR-deletion mainly affects the related pathways involved in cell motility, membrane transport, signal transduction, carbohydrate metabolism, and amino acid metabolism in V. alginolyticus. The efficacy of ΔfliR as a candidate of live attenuated vaccine were evaluated by intraperitoneal injection in grouper. The ΔfliR provided the RPS (Relative protection rate) of 67.2% against V. alginolyticus in groupers. The ΔfliR efficiently stimulated antibody production with specific IgM still detected at 42 d post-vaccination, and significantly elevated the activity of antioxidant enzymes like Catalase (CAT), Superoxide dismutase (SOD), and lactate dehydrogenase (LDH) in the serum. The higher expression levels of immune-related genes were observed in the immune tissues of inoculated grouper compared to the control. In conclusion, ΔfliR effectively improved the immunity of inoculated fish. The results suggest that ΔfliR is an effective live attenuated vaccine against vibriosis in in grouper.


Assuntos
Doenças dos Peixes , Vibrioses , Animais , Vibrio alginolyticus/genética , Vacinas Atenuadas/genética , Peixes , Vibrioses/prevenção & controle , Vibrioses/veterinária , Fatores de Virulência/genética , Doenças dos Peixes/microbiologia , Vacinas Bacterianas/genética
12.
Vaccine ; 41(19): 3047-3057, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037709

RESUMO

Q fever is a highly infectious zoonosis caused by the Gram-negative bacterium Coxiella burnetii. The worldwide distribution of Q fever suggests a need for vaccines that are more efficacious, affordable, and does not induce severe adverse reactions in vaccine recipients with pre-existing immunity against Q fever. Potential Q fever vaccine antigens include lipopolysaccharide (LPS) and several C. burnetii surface proteins. Antibodies elicited by purified C. burnetii lipopolysaccharide (LPS) correlate with protection against Q fever, while antigens encoded by adenoviral vectored vaccines can induce cellular immune responses which aid clearing of intracellular pathogens. In the present study, the immunogenicity and the protection induced by adenoviral vectored constructs formulated with the addition of LPS were assessed. Multiple vaccine constructs encoding single or fusion antigens from C. burnetii were synthesised. The adenoviral vectored vaccine constructs alone elicited strong cellular immunity, but this response was not correlative with protection in mice. However, vaccination with LPS was significantly associated with lower weight loss post-bacterial challenge independent of co-administration with adenoviral vaccine constructs, supporting further vaccine development based on LPS.


Assuntos
Vacinas contra Adenovirus , Coxiella burnetii , Febre Q , Animais , Camundongos , Coxiella burnetii/genética , Febre Q/prevenção & controle , Lipopolissacarídeos , Vacinas Bacterianas/genética , Vacinação , Imunização , Adenoviridae/genética
13.
Infect Immun ; 91(4): e0016922, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36939332

RESUMO

Bacterial flagella are involved in infection through their roles in host cell adhesion, cell invasion, auto-agglutination, colonization, the formation of biofilms, and the regulation and secretion of nonflagellar bacterial proteins that are involved in the virulence process. In this study, we constructed a fusion protein vaccine (FliCD) containing the Clostridioides difficile flagellar proteins FliC and FliD. The immunization of mice with FliCD induced potent IgG and IgA antibody responses against FliCD, protected mice against C. difficile infection (CDI), and decreased the C. difficile spore and toxin levels in the feces after infection. Additionally, the anti-FliCD serum inhibited the binding of C. difficile vegetative cells to HCT8 cells. These results suggest that FliCD may represent an effective vaccine candidate against CDI.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Camundongos , Proteínas Recombinantes de Fusão/genética , Clostridioides/metabolismo , Infecções por Clostridium/microbiologia , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/genética
14.
Appl Environ Microbiol ; 89(3): e0204722, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36809058

RESUMO

Bacterial outer membrane vesicles (OMVs) are considered a promising vaccine platform for their high built-in adjuvanticity and ability to efficiently induce immune responses. OMVs can be engineered with heterologous antigens based on genetic engineering strategies. However, several critical issues should still be validated, including optimal exposure to the OMV surface, increased production of foreign antigens, nontoxicity, and induction of powerful immune protection. In this study, engineered OMVs with the lipoprotein transport machinery (Lpp) were designed to present SaoA antigen as a vaccine platform against Streptococcus suis. The results suggest that Lpp-SaoA fusions can be delivered on the OMV surface and do not have significant toxicity. Moreover, they can be engineered as lipoprotein and significantly accumulated in OMVs at high levels, thus accounting for nearly 10% of total OMV proteins. Immunization with OMVs containing Lpp-SaoA fusion antigen induced strong specific antibody responses and high levels of cytokines, as well as a balanced Th1/Th2 immune response. Furthermore, the decorated OMV vaccination significantly enhanced microbial clearance in a mouse infection model. It was found that antiserum against lipidated OMVs significantly promoted the opsonophagocytic uptake of S. suis in RAW246.7 macrophages. Lastly, OMVs engineered with Lpp-SaoA induced 100% protection against a challenge with 8× the 50% lethal dose (LD50) of S. suis serotype 2 and 80% protection against a challenge with 16× the LD50 in mice. Altogether, the results of this study provide a promising versatile strategy for the engineering of OMVs and suggest that Lpp-based OMVs may be a universal adjuvant-free vaccine platform for important pathogens. IMPORTANCE Bacterial outer membrane vesicles (OMVs) have become a promising vaccine platform due to their excellent built-in adjuvanticity properties. However, the location and amount of the expression of the heterologous antigen in the OMVs delivered by the genetic engineering strategies should be optimized. In this study, we exploited the lipoprotein transport pathway to engineer OMVs with heterologous antigen. Not only did lapidated heterologous antigen accumulate in the engineered OMV compartment at high levels, but also it was engineered to be delivered on the OMV surface, thus leading to the optimal activation of antigen-specific B cells and T cells. Immunization with engineered OMVs induced a strong antigen-specific antibodies in mice and conferred 100% protection against S. suis challenge. In general, the data of this study provide a versatile strategy for the engineering of OMVs and suggest that OMVs engineered with lipidated heterologous antigens may be a vaccine platform for significant pathogens.


Assuntos
Streptococcus suis , Vacinas , Animais , Camundongos , Streptococcus suis/genética , Streptococcus suis/metabolismo , Antígenos Heterófilos , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/metabolismo , Lipoproteínas/genética , Anticorpos Antibacterianos , Vacinas Bacterianas/genética
15.
Microbiol Spectr ; 10(6): e0377622, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453908

RESUMO

To develop safe and highly effective live vaccines, rational vaccine design is necessary. Here, we sought a simple approach to rationally develop a safe attenuated vaccine against the genome-reduced pathogen Erysipelothrix rhusiopathiae. We examined the mRNA expression of all conserved amino acid biosynthetic genes remaining in the genome after the reductive evolution of E. rhusiopathiae. Reverse transcription-quantitative PCR (qRT-PCR) analysis revealed that half of the 14 genes examined were upregulated during the infection of murine J774A.1 macrophages. Gene deletion was possible only for three proline biosynthesis genes, proB, proA, and proC, the last of which was upregulated 29-fold during infection. Five mutants bearing an in-frame deletion of one (ΔproB, ΔproA, or ΔproC mutant), two (ΔproBA mutant), or three (ΔproBAC mutant) genes exhibited attenuated growth during J774A.1 infection, and the attenuation and vaccine efficacy of these mutants were confirmed in mice and pigs. Thus, for the rational design of live vaccines against genome-reduced bacteria, the selective targeting of genes that escaped chromosomal deletions during evolution may be a simple approach for identifying genes which are specifically upregulated during infection. IMPORTANCE Identification of bacterial genes that are specifically upregulated during infection can lead to the rational construction of live vaccines. For this purpose, genome-based approaches, including DNA microarray analysis and IVET (in vivo expression technology), have been used so far; however, these methods can become laborious and time-consuming. In this study, we used a simple in silico approach and showed that in genome-reduced bacteria, the genes which evolutionarily remained conserved for metabolic adaptations during infection may be the best targets for the deletion and construction of live vaccines.


Assuntos
Erysipelothrix , Suínos , Animais , Camundongos , Vacinas Atenuadas/genética , Erysipelothrix/genética , Macrófagos , Vacinas Bacterianas/genética
16.
Microbiol Spectr ; 10(6): e0236122, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36377878

RESUMO

Mycoplasma hyopneumoniae (M. hyopneumoniae, Mhp) is the etiological agent of swine enzootic pneumonia (EP), which has been associated with considerable economic losses due to reduced daily weight gain and feed efficiency. Adhesion to the cilia is important for Mhp to colonize the respiratory epithelium. Therefore, a successful vaccine must induce broad Mhp-specific immune responses at the mucosal surface. Recombinant attenuated Salmonella strains are believed to act as powerful live vaccine vectors that are able to elicit mucosal immune responses against various pathogens. To develop efficacious and inexpensive vaccines against Mhp, the immune responses and protection induced by recombinant attenuated Salmonella vaccines based on the P42 and P97 antigens of Mhp were evaluated. In general, the oral inoculation of recombinant rSC0016(pS-P42) or rSC0016(pS-P97) resulted in strong mucosal immunity, cell-mediated immunity, and humoral immunity, which was a mixed Th1/Th2-type response. In addition, the levels of specific IL-4 and IFN-γ in the immunized mice were increased, and the proliferation of lymphocytes was also enhanced, confirming the production of a good cellular immune response. Finally, both vaccine candidate strains were able to improve the weight loss of mice after a challenge and reduce clinical symptoms, lung pathological damage, and the inflammatory cell infiltration. These results suggest that the delivery of protective antigens with recombinant attenuated Salmonella vectors may be an effective means by which to combat Mhp infection. IMPORTANCE Mhp is the main pathogen of porcine enzootic pneumonia, a highly infectious and economically significant respiratory disease that affects pigs of all ages. As the target tissue of Mhp infections are the mucosal sites of the respiratory tract, the induction of protective immunity at the mucosal tissues is the most efficient strategy by which to block disease transmission. Because the stimulation of mucosal immune responses is efficient, Salmonella-vector oral vaccines are expected to be especially useful against mucosal-invading pathogens. In this study, we expressed the immunogenic proteins of P42 and P97 with the attenuated Salmonella Choleraesuis vector rSC0016, thereby generating a low-cost and more effective vaccine candidate against Mhp by inducing significant mucosal, humoral and cellular immunity. Furthermore, rSC0016(pS-P42) effectively prevents Mhp-induced weight loss and the pulmonary inflammation of mice. Because of the effectiveness of rSC0016(pS-P42) against Mhp infection in mice, this novel vaccine candidate strain shows great potential for its use in the pig breeding industry.


Assuntos
Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática , Salmonella enterica , Animais , Camundongos , Suínos , Mycoplasma hyopneumoniae/genética , Vacinas Bacterianas/genética , Imunização/métodos , Vacinas Sintéticas/genética , Salmonella/genética , Pneumonia Suína Micoplasmática/prevenção & controle , Imunidade nas Mucosas
17.
Nat Commun ; 13(1): 6075, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241641

RESUMO

Listeria monocytogenes is a foodborne intracellular bacterial pathogen leading to human listeriosis. Despite a high mortality rate and increasing antibiotic resistance no clinically approved vaccine against Listeria is available. Attenuated Listeria strains offer protection and are tested as antitumor vaccine vectors, but would benefit from a better knowledge on immunodominant vector antigens. To identify novel antigens, we screen for Listeria peptides presented on the surface of infected human cell lines by mass spectrometry-based immunopeptidomics. In between more than 15,000 human self-peptides, we detect 68 Listeria immunopeptides from 42 different bacterial proteins, including several known antigens. Peptides presented on different cell lines are often derived from the same bacterial surface proteins, classifying these antigens as potential vaccine candidates. Encoding these highly presented antigens in lipid nanoparticle mRNA vaccine formulations results in specific CD8+ T-cell responses and induces protection in vaccination challenge experiments in mice. Our results can serve as a starting point for the development of a clinical mRNA vaccine against Listeria and aid to improve attenuated Listeria vaccines and vectors, demonstrating the power of immunopeptidomics for next-generation bacterial vaccine development.


Assuntos
Listeria monocytogenes , Listeria , Listeriose , Animais , Proteínas de Bactérias/genética , Vacinas Bacterianas/genética , Linfócitos T CD8-Positivos , Humanos , Epitopos Imunodominantes , Lipossomos , Listeria/genética , Listeria monocytogenes/genética , Listeriose/prevenção & controle , Proteínas de Membrana , Camundongos , Nanopartículas , Vacinas Atenuadas , Vacinas Sintéticas/genética , Vacinas de mRNA
18.
Biomed Res Int ; 2022: 4975721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164443

RESUMO

Legionella pneumophila is found in the natural aquatic environment and can resist a wide range of environmental conditions. There are around fifty species of Legionella, at least twenty-four of which are directly linked to infections in humans. L. pneumophila is the cause of Legionnaires' disease, a potentially lethal form of pneumonia. By blocking phagosome-lysosome fusion, L. pneumophila lives and proliferates inside macrophages. For this disease, there is presently no authorized multiepitope vaccine available. For the multi-epitope-based vaccine (MEBV), the best antigenic candidates were identified using immunoinformatics and subtractive proteomic techniques. Several immunoinformatics methods were utilized to predict B and T cell epitopes from vaccine candidate proteins. To construct an in silico vaccine, epitopes (07 CTL, 03 HTL, and 07 LBL) were carefully selected and docked with MHC molecules (MHC-I and MHC-II) and human TLR4 molecules. To increase the immunological response, the vaccine was combined with a 50S ribosomal adjuvant. To maximize vaccine protein expression, MEBV was cloned and reverse-translated in Escherichia coli. To prove the MEBV's efficacy, more experimental validation is required. After its development, the resulting vaccine is greatly hoped to aid in the prevention of L. pneumophila infections.


Assuntos
Vacinas Bacterianas , Legionella pneumophila , Doença dos Legionários , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Legionella pneumophila/genética , Legionella pneumophila/imunologia , Doença dos Legionários/prevenção & controle , Proteômica , Receptor 4 Toll-Like/imunologia
19.
Front Cell Infect Microbiol ; 12: 926994, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837473

RESUMO

The molecular and cellular pathogenesis of leptospirosis remains poorly understood. Based on comparative bacterial genomics data, we recently identified the hypothetical PF07598 gene family as encoding secreted exotoxins (VM proteins) that mediate cytotoxicity in vitro. To address whether VM proteins mediate in vivo leptospirosis pathogenesis, we tested the hypothesis that VM protein immunization of mice would protect against lethal challenge infection and reduce bacterial load in key target organs. C3H/HeJ mice were immunized with recombinant E. coli-produced, endotoxin-free, leptospiral VM proteins (derived from L. interrogans serovar Lai) in combination with the human-compatible adjuvant, glucopyranoside lipid A/squalene oil-in-water. Mice receiving full length recombinant VM proteins were protected from lethal challenge infection by L. interrogans serovar Canicola and had a 3-4 log10 reduction in bacterial load in the liver and kidney. These experiments show that immunization with recombinant VM proteins prevents leptospirosis clinical pathogenesis and leads to markedly reduced key target organ infection in this animal model. These data support the role of leptospiral VM proteins as virulence factors and suggest the possibility that a VM protein-based, serovar-independent, pan-leptospirosis vaccine may be feasible.


Assuntos
Proteínas de Escherichia coli , Leptospira interrogans , Leptospira , Leptospirose , Animais , Carga Bacteriana , Vacinas Bacterianas/genética , Escherichia coli/genética , Humanos , Rim/patologia , Leptospirose/microbiologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos C3H , Proteínas Recombinantes/genética , Vacinação , Virulência
20.
Appl Biochem Biotechnol ; 194(10): 4892-4914, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35670904

RESUMO

Multidrug-resistant Acinetobacter baumannii (A. baumannii) infections are becoming more prevalent all over the world. As a cost-effective and preventative method, vaccination seems to be required against this bacterium. In the present study, subtractive proteomics along with reverse vaccinology approaches was used to predict suitable therapeutics against A. baumannii. Using the Vaxign online tool, we studied over 35 genomes of A. baumannii strains and chose outer membrane and secreted proteins of A. baumannii 1656-2 as possible vaccine candidates. Then, investigations were performed on the immunogenicity, antigenic characteristics, physicochemical properties, B-cell and MHC class I, and MHC class II molecules epitope densities of proteins. After optimizing the codon of the proteins, the pcDNA3.1( +) expression construct was designed and the immunogenicity, allergenicity, and physicochemical properties of the vaccine construct were predicted. Hcp and OmpC proteins were predicted as extracellular and outer membrane proteins, respectively. These proteins interact with 10 other proteins to form a network of protein interactions with virulence properties. Immunoassays of Hcp and OmpC proteins showed antigenicity of 0.88 and 0.79, respectively. These proteins have 5 structural cell epitope points and 5 linear B epitope points. They are also able to bind to different HLA alleles of MCH class I/class II as selected immunogenic proteins and designed non-allergenic structures with solubility of 0.650 and immunogenicity score of 0.91. The results of this "in silico" study indicate high specificity and the development of a significant humoral and cellular immune response. It can be concluded that the Hcp and OmpC dual vaccine construct is one of the promising candidates against A. baumannii. The findings of this "in silico" study show excellent specificity and the emergence of a substantial humoral and cellular immune response. This is a computer-based study that needs to be tested in vitro and in vivo to corroborate the conclusions of the vaccine design procedures.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/genética , Vacinas Bacterianas/genética , Biologia Computacional/métodos , Epitopos , Antígenos de Histocompatibilidade Classe II , Humanos , Proteínas de Membrana/metabolismo , Vacinologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...